Retire-Cluster 任务执行框架提供了一个强大的分布式任务执行系统,能够智能地在设备集群中分配计算工作。
该框架包含几个关键组件:
from retire_cluster.tasks import Task, TaskRequirements, TaskPriority
# 创建简单任务
task = Task(
task_type="echo",
payload={"message": "Hello World!"},
priority=TaskPriority.NORMAL
)
# 提交到集群
task_id = scheduler.submit_task(task)
# 需要特定设备能力的任务
compute_task = Task(
task_type="python_eval",
payload={"expression": "sum(range(1000000))"},
requirements=TaskRequirements(
min_cpu_cores=4,
min_memory_gb=8,
required_platform="linux",
timeout_seconds=60
)
)
# 针对移动设备的任务
mobile_task = Task(
task_type="system_info",
payload={},
requirements=TaskRequirements(
required_role="mobile",
required_platform="android"
)
)
框架包含几种内置任务类型:
Task(
task_type="echo",
payload={"message": "您的消息"}
)
原样返回负载数据。用于测试连接性。
Task(
task_type="sleep",
payload={"duration": 5.0}
)
休眠指定的秒数。
Task(task_type="system_info", payload={})
返回设备能力和系统信息。
Task(
task_type="python_eval",
payload={"expression": "2 + 2"}
)
安全地评估Python表达式。出于安全考虑有限制。
Task(
task_type="command",
payload={"command": "ls -la", "shell": True}
)
执行系统命令。需要适当的安全措施。
Task(
task_type="file_operation",
payload={
"operation": "read",
"path": "/path/to/file.txt"
}
)
执行文件系统操作。
您可以定义自定义任务类型:
from retire_cluster.tasks import BaseTaskHandler
class FibonacciTaskHandler(BaseTaskHandler):
task_type = "fibonacci"
def execute(self, payload):
n = payload.get("n", 10)
def fibonacci(n):
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
result = fibonacci(n)
return {
"input": n,
"result": result,
"algorithm": "recursive"
}
# 注册任务处理器
task_registry.register(FibonacciTaskHandler())
# 使用自定义任务
fib_task = Task(
task_type="fibonacci",
payload={"n": 20}
)
from retire_cluster.tasks import TaskRequirements
requirements = TaskRequirements(
# 硬件要求
min_cpu_cores=2, # 最少CPU核心数
min_memory_gb=4, # 最少内存(GB)
min_storage_gb=10, # 最少存储空间(GB)
# 平台要求
required_platform="linux", # 必需平台(linux/android/windows/macos)
required_arch="x86_64", # 必需架构
required_role="compute", # 必需角色(compute/mobile/storage)
# 性能要求
max_cpu_usage=80, # 最大CPU使用率
max_memory_usage=70, # 最大内存使用率
# 执行要求
timeout_seconds=300, # 超时时间
max_retries=3, # 最大重试次数
# 网络要求
requires_internet=True, # 需要互联网连接
bandwidth_mbps=10, # 最小带宽要求
# 特殊要求
requires_gpu=False, # 需要GPU
requires_sensors=["gps", "camera"], # 需要的传感器
exclusive=False, # 独占执行
)
调度器使用加权评分系统选择最佳设备:
def calculate_device_score(device, requirements):
score = 0.0
# CPU可用性评分(40%权重)
cpu_available = 100 - device.cpu_usage
if cpu_available >= requirements.min_cpu_usage:
score += 0.4 * (cpu_available / 100)
# 内存可用性评分(30%权重)
memory_available = device.memory_total - device.memory_used
if memory_available >= requirements.min_memory_gb:
score += 0.3 * min(1.0, memory_available / requirements.min_memory_gb)
# 负载评分(20%权重)
load_factor = 1 - (device.active_tasks / device.max_concurrent_tasks)
score += 0.2 * load_factor
# 网络延迟评分(10%权重)
if device.network_latency < 100: # ms
score += 0.1 * (1 - device.network_latency / 1000)
return score
from retire_cluster.tasks import TaskStatus
# 任务状态枚举
class TaskStatus:
PENDING = "pending" # 等待调度
QUEUED = "queued" # 已队列,等待执行
RUNNING = "running" # 正在执行
COMPLETED = "completed" # 成功完成
FAILED = "failed" # 执行失败
CANCELLED = "cancelled" # 已取消
TIMEOUT = "timeout" # 执行超时
class TaskLifecycleHandler:
def on_submit(self, task):
"""任务提交时调用"""
print(f"任务 {task.id} 已提交")
def on_schedule(self, task, device):
"""任务调度到设备时调用"""
print(f"任务 {task.id} 调度到设备 {device.id}")
def on_start(self, task):
"""任务开始执行时调用"""
print(f"任务 {task.id} 开始执行")
def on_progress(self, task, progress):
"""任务进度更新时调用"""
print(f"任务 {task.id} 进度: {progress}%")
def on_complete(self, task, result):
"""任务完成时调用"""
print(f"任务 {task.id} 完成,结果: {result}")
def on_error(self, task, error):
"""任务出错时调用"""
print(f"任务 {task.id} 出错: {error}")
from retire_cluster.tasks import TaskPriority, TaskQueue
class TaskPriority:
URGENT = 1 # 紧急(立即执行)
HIGH = 2 # 高优先级
NORMAL = 3 # 正常优先级(默认)
LOW = 4 # 低优先级
BACKGROUND = 5 # 后台任务
# 创建任务队列
queue = TaskQueue(
max_size=1000, # 最大队列大小
priority_weights={ # 优先级权重
TaskPriority.URGENT: 1.0,
TaskPriority.HIGH: 0.8,
TaskPriority.NORMAL: 0.5,
TaskPriority.LOW: 0.3,
TaskPriority.BACKGROUND: 0.1
}
)
# 添加任务到队列
queue.enqueue(task, priority=TaskPriority.HIGH)
# 获取下一个任务
next_task = queue.dequeue()
# 获取队列统计
stats = queue.get_statistics()
print(f"队列大小: {stats['size']}")
print(f"按优先级分布: {stats['by_priority']}")
print(f"平均等待时间: {stats['avg_wait_time_seconds']}秒")
# 获取队列中的任务
pending_tasks = queue.list_tasks(status=TaskStatus.PENDING)
running_tasks = queue.list_tasks(status=TaskStatus.RUNNING)
from retire_cluster.tasks import TaskExecutor
executor = TaskExecutor(
max_concurrent_tasks=5, # 最大并发任务数
resource_limits={
"cpu_percent": 80, # CPU使用限制
"memory_mb": 2048, # 内存使用限制(MB)
"execution_time": 3600, # 最大执行时间(秒)
},
sandbox_enabled=True, # 启用沙盒执行
log_level="INFO"
)
# 监控任务执行
def monitor_task_execution(task_id):
while True:
status = get_task_status(task_id)
print(f"任务 {task_id} 状态: {status.status}")
if status.status == TaskStatus.RUNNING:
print(f"进度: {status.progress}%")
print(f"CPU使用: {status.resource_usage['cpu']}%")
print(f"内存使用: {status.resource_usage['memory']}MB")
if status.status in [TaskStatus.COMPLETED, TaskStatus.FAILED]:
break
time.sleep(5)
# 批量监控
def monitor_all_tasks():
tasks = get_active_tasks()
for task in tasks:
print(f"任务 {task.id}: {task.status} 在设备 {task.device_id}")
# 获取任务执行指标
metrics = get_task_metrics(period="24h")
print(f"总任务数: {metrics['total_tasks']}")
print(f"成功率: {metrics['success_rate']}%")
print(f"平均执行时间: {metrics['avg_execution_time']}秒")
print(f"设备利用率: {metrics['device_utilization']}%")
# 按设备的性能
for device_id, device_metrics in metrics['by_device'].items():
print(f"设备 {device_id}:")
print(f" 完成任务: {device_metrics['completed']}")
print(f" 失败任务: {device_metrics['failed']}")
print(f" 平均响应时间: {device_metrics['avg_response_time']}ms")
class TaskError:
# 可重试错误
NETWORK_ERROR = "network_error"
TIMEOUT_ERROR = "timeout_error"
RESOURCE_EXHAUSTED = "resource_exhausted"
# 不可重试错误
INVALID_PAYLOAD = "invalid_payload"
PERMISSION_DENIED = "permission_denied"
UNSUPPORTED_OPERATION = "unsupported_operation"
# 重试策略
retry_policy = RetryPolicy(
max_retries=3,
backoff_strategy="exponential", # linear, exponential, fixed
base_delay=2.0, # 基础延迟(秒)
max_delay=60.0, # 最大延迟(秒)
retryable_errors=[
TaskError.NETWORK_ERROR,
TaskError.TIMEOUT_ERROR,
TaskError.RESOURCE_EXHAUSTED
]
)
class FailoverHandler:
def on_device_failure(self, device_id, running_tasks):
"""设备故障时的处理"""
print(f"设备 {device_id} 故障,重新调度 {len(running_tasks)} 个任务")
for task in running_tasks:
# 标记原任务为失败
mark_task_failed(task.id, reason="device_failure")
# 创建新任务实例
new_task = task.clone()
new_task.requirements.exclude_devices = [device_id]
# 重新提交
scheduler.submit_task(new_task)
def on_task_failure(self, task, error):
"""任务失败时的处理"""
if error.type in retry_policy.retryable_errors:
if task.retry_count < retry_policy.max_retries:
# 计算延迟时间
delay = calculate_backoff_delay(task.retry_count)
# 计划重试
schedule_retry(task, delay)
else:
# 超过最大重试次数,标记为永久失败
mark_task_permanently_failed(task.id)
else:
# 不可重试错误,立即失败
mark_task_permanently_failed(task.id)
from retire_cluster.tasks import TaskBatch
# 创建任务批次
batch = TaskBatch(
name="数据处理批次",
description="处理1000个数据文件"
)
# 添加任务到批次
for i in range(1000):
task = Task(
task_type="process_file",
payload={"file_path": f"/data/file_{i}.txt"},
batch_id=batch.id
)
batch.add_task(task)
# 提交整个批次
batch_id = scheduler.submit_batch(batch)
# 监控批次进度
progress = get_batch_progress(batch_id)
print(f"批次进度: {progress.completed}/{progress.total} 任务完成")
# 并行任务组
parallel_group = ParallelTaskGroup([
Task(task_type="download", payload={"url": "http://example.com/file1"}),
Task(task_type="download", payload={"url": "http://example.com/file2"}),
Task(task_type="download", payload={"url": "http://example.com/file3"})
])
# 等待所有任务完成
results = parallel_group.wait_for_completion(timeout=300)
# 串行任务链
task_chain = TaskChain([
Task(task_type="download", payload={"url": "http://example.com/data.zip"}),
Task(task_type="extract", payload={"archive": "data.zip"}),
Task(task_type="process", payload={"input_dir": "data/"})
])
# 执行任务链
chain_result = task_chain.execute()
# 定义任务模板
template = TaskTemplate(
name="机器学习训练",
description="标准ML模型训练流程",
tasks=[
{
"task_type": "data_preprocessing",
"payload": {
"input_path": "",
"output_path": ""
},
"requirements": {
"min_memory_gb": 8
}
},
{
"task_type": "model_training",
"payload": {
"data_path": "",
"model_type": "",
"hyperparameters": ""
},
"requirements": {
"min_cpu_cores": 4,
"requires_gpu": True
}
}
]
)
# 使用模板创建任务
workflow = template.instantiate({
"input_data": "/data/training_set.csv",
"processed_data": "/tmp/processed.pkl",
"model_type": "random_forest",
"hyperparams": {"n_estimators": 100}
})
# 执行工作流
workflow_id = scheduler.submit_workflow(workflow)
# 安全执行配置
sandbox_config = SandboxConfig(
allow_network=False, # 禁止网络访问
allow_filesystem=True, # 允许文件系统访问
allowed_paths=["/tmp", "/data"], # 允许的路径
max_file_size="100MB", # 最大文件大小
max_execution_time=300, # 最大执行时间
memory_limit="2GB", # 内存限制
cpu_limit=80 # CPU使用限制
)
# 创建沙盒任务
sandboxed_task = Task(
task_type="data_analysis",
payload={"script": "analyze_data.py"},
sandbox_config=sandbox_config
)
# 任务权限
class TaskPermissions:
READ_FILES = "read_files"
WRITE_FILES = "write_files"
NETWORK_ACCESS = "network_access"
SYSTEM_COMMANDS = "system_commands"
# 基于角色的访问控制
task = Task(
task_type="file_processing",
payload={"input_file": "data.txt"},
required_permissions=[
TaskPermissions.READ_FILES,
TaskPermissions.WRITE_FILES
]
)
通过这个全面的任务执行框架,Retire-Cluster能够高效、安全地管理和执行各种类型的分布式计算任务,充分利用集群中每个设备的计算能力。